

RHIC Retreat 2006

J. Sandberg

July 2006

JSandberg@bnl.gov

Typical Dips

Response of Equipment

Emergency Power Systems

STAR Power Supply Failures

- 2. Response to 1006 Arc Flash
- 3. 1004 B CB Problem
- 4. AMMPS Transformer Replacement

Power Dips (Internal / External)

Number of power dips.

Dates: 4/14, 5/29, 5/30, 6/4, 6/10,

6/23, 6/24 and 6/25

Nature of power dip: Usually 15~20%, 6 to 10 cycles.

Effects

- 1. Power Supply or Equipment Failure
 - 2. Under Voltage Settings
 - 3. Controls Upset

- Study the Powerfail Modules On VME Crates
 - Add UPS power to the Alcoves
 - Put Network Switches on UPSs
 - Study the sensitivity of Rotator and Snake
 Power supplies to power quality
- Investigate the Under Voltages trip settings on Power supplies

UPS

Number of UPS:

AGS: 21 units. 6 kVA, 15 kVA and 30 kVA.

RHIC: 27 units. 6 kVA, 10 kVA and 15 kVA.

Typically the UPS can supply power for 10-15 minutes

Summer Projects

SSecurity CYBEREX UPS tie-in 9911B UPS1 and UPS2 upgrade to 30 kVA AAlcove UPS, under consideration ((Thirty Six 3 kVA UPSs-Material Costs \$72K)

Diesel Generators

- C-AD has eight diesel generators at RHIC complex and four diesel generators at 912A
- Two of the four diesel generators are out of service due to shortage of the parts.
 - The total AGS complex demand emergency load is 1123 kVA

- The B912A generators are maintained routinely and run with the load banks once every month, but not started with the ATS
- The RHIC generators are maintained and load tested once every two month. Load testing began 2005

- •A \$500K budget for the upgrade of the B912 generators was approved.
 - •The budget includes two 400 kW generators and three automatic transfer switches (ATS).
 - •The second phase of the project will provide a third generator and three transfer switches.

ATS

•AGS: 16 units.

•RHIC: 8 units.

•Project:

•Upgrade 928 ATS from 200A to 400A. The new switch has been delivered.

STAR Detector PS Problems

- •A Hard crash of the Main Solenoid power supply would typically blow fuses in the power supply filter section.
- A hard crash of the Main Solenoid PS would typically blow fuses in the Space Trim SCR Bridges
- A Faulty Fiber optic cable / sender was found in the Main SCR triggering circuit

Response to 1006 Arc Flash

Findings

Possible Causes for Arc Flash

C-AD

- High transient voltage
- Arcing ground fault on ungrounded delta system
 - Foreign object
 - Open conduit stub may be source of foreign object
- Switch Failure (after examination of switches)

Accident Prevention Recommendations

C-AD

- Activate/install ground fault detection systems
- Install systems to minimize voltage transients
- Implement a project plan for energy calculations
- Review other practices:
 - Racking circuit breakers with bus energized
 - Inserting/removing motor control center starter-buckets while energized

Summer Projects Ground fault monitoring

- Complete the remote monitoring and alarming of 18 substations
- Reviewing the possibility of a 480V high resistance ground system.
- Measuring the substation charging currents to determine whether the existing PTs can support an appropriate burden resistance

Power Systems

Summer Projects

Replace GE SPECTRA series Power Panelboards

SSTAR PB-1 panelboard with motorized main breaker RReplace nine priority "1" and "2" power panelboards. Inspect and maintain other 15 power panelboards

Summer Projects

Building 1004B GE AKR breaker reconditioning

Incident Energy Calculations

Updating One Line Diagrams

Proper Labeling of Panels

AMMPS Transformer Replacement

Siemens PS Block Diagram

Siemens Transformer Yard

Phasor
Diagram of ½
the present
Transformer
Configuration

F to P filtered Front Porch Total Voltage

